Automotive AR examples

| looking at some state of the art examples of in-car AR systems on the market

MBUX – the newest infotainment system of Mercedes-Benz

2018 was the year when Mercedes Benz introduced their newest infotainment system called MBUX. This uses the front camera (originally used for parking) to create a live stream of the road ahead, combined with graphics of navigation hints or finding adresses. Since then it was continuosly improved and the latest version was revealed in 2021 in the S/EQS-Class models, featuring an AR navigation display and a HUD with distance assist, lane keeping assist and dinamic arrows showing directions.

Video demostrations of the 2021 MBUX system:
https://www.youtube.com/watch?v=hnRbi5UcJnw
https://www.youtube.com/watch?v=DCgy3askMcM

Audi AR HUD

Audi announced their augmented reality HUDs as an optional feature for the newest high-end electric SUV, the Q4 e-tron for 2021. The visual information shown in front of the driver are similar to the MBUX’s content. Audi explicitly defines two areas: the status field (in a visual distance of ca. 3 m) and the AR field (in a visual distance of ca. 10 m), which seems to be bigger than in the German competitor’s solution.

Demo video of the Q4 e-tron HUD:
https://www.youtube.com/watch?v=Ea6o-_smVk8

Hyundai and WayRay

Looking at HUDs further, Hyundai/Genesis was the first brand to implement laser-holographic AR head-up displays in their G80 model, presented by the young AR developer company WayRay in 2019. It is said to have tremendous benefits compared to past HUDs (using reflected LCD screens) in terms of precision and visibility for the driver.

The Swiss startup WayRay claims to be the only company to have implemented holography to HUDs. Their holographic optical elements (HOEs) in their displays should provide unprecedented 3D images while remaining transparent and capable of being bent to windshields. The company presents its uniqueness in the field by covering “deep-tech” holography hardware development (e.g. blue-laser beams) as well as software development, all realised in-house.

They have already received large fundings by Hyundai and Porsche, have presented a 180° AR cockpit experience and offer different add-on solutions for vehicles, boats and airplanes. Their newest project is a shared car concept (“Holograktor”), designed for the “Metaverse” with a complete gaming / working / learning possibility while traveling autonomously. In their cooperation with Pininfarina on a concept car, they proposed solutions of the “True AR” displays also for side windows, providing new ways of passenger infotainment and entertainment experiences.

A report from the FIA Formula E on WayRay’s developments also predicts the use of HUD systems for race cars in the future. The pilots behind the wheels could get visualized ideal racing lines, brake points or a ghost car to chase on the race track.

Hyundai’s In-Car Noise Cancelling

Besides HUDs, Hyundai is pushing the development of AR solutions in cars in other aspects as well. Like in our headphones, noise cancelling also found its way into the car interiors, bringing more comfort to the passengers. According to Hyundai, the earlier systems were only capable of masking steady engine noises, but their newest solution (“Road Noise Active Noise Control”) in the upcoming Genesis GV80 will be capable of deleting different tire noises at different speeds. It uses multiple microphones placed directly into the wheel wells, accelerometers, amplifiers and a digital signal processor. As a result of the complex calculations for each individual wheel, the in-car noise should be reduced by half (3 dB).

Engine sound enhancements

Writing about noises of the car, we also have to take a short look at the opposite effects to noise cancelling – the engine sound enhancement devices. Due to the downsizing of the engine displacements, the roars coming from the combustion got also reduced. To keep the emotions connected to sporty engine sounds though, manufacturers are using additional devices to create compensating sound effects.

These can be pipes from the intake manifold connected to the dashboard walls, in some cases with an extra flap to control the sound throughput only for the sporty driving situations (Toyota, Ford, Porsche).

BMW was known to use engine sound amplification through a synthesised reproduction of the actual engine noise played simply on the car’s speakers.

The Volkswagen Group made it a bit more complicated by adding a special speaker device (“Soundaktor”) below the windshield to produce deep, buzzing tones resembling larger engine sounds. In some models there are also speakers built into the exhaust pipes to alter the natural noises coming from the engine, to make them more emotional or masculin.

Soundmodule for the Mercedes G350d

3D ADAS system of Arkamys

Beeping noises in a car are existent since many years, with the intention to help drivers. But beeping on itself is not always enough to give an understandable signal about what is happening or dangerous around the driver. The company Arkamys presented an intuitive alerting concept for Advanced Driver Assistance Systems – parking, lane keeping, blind spot and other assistants – by placing many different speakers inside the cabin and generating a 3D sound experience. With this it is possible to signalize the direction where a possible danger can exist, making the recognition and processing of the information easier and more intuitive for the driver.

Electric cars

Electric cars are further good examples where in-car noise generators are used to give the driver and passengers the known feeling of vehicle driving dynamics. Porsche is a perfect example where specific sounds are developed for representing the brand’s identity within the driver experience. They call the system “Porsche Electric Sport Sound” that enhances some natural noises of the drivetrain but also reduces disturbing ones, while implementing sounds to compy with the legal regulations for electric vehicle alerting sounds.

Thinking further about sound augmentation in cars, probably the already most spread system is the parking assistant, giving beeping sound feedback on the remaining distance to obstacles around the car. The design of these systems could probably fill a chapter on its own, but as it is already an everday tool, I won’t go further into detail on it.

The above listed examples are not even close to a complete list of use cases. Therefor I want to further research the current technologies. The next step will then be to look into the reasons for these systems, why they were developed and what practical needs, feelings and experiences are the underlying causes.

Sources

Online article on Wired: With In-Car AR, Drivers Get a New View of the Road Ahead. Retrieved on 05.12.2021
https://www.wired.com/story/in-car-ar-drivers-get-new-view-road-ahead/

Article on Wired: Hyundai’s Luxury SUV Mixes Mics and Math for a Silent Ride. Retrieved on 05.12.2021
https://www.wired.com/story/hyundai-genesis-gv80-suv-noise-cancelling/

Online Article on FIA Formula E: How AR and VR are revolutionising the car industry. Retrieved on 05.12.2021
https://www.fiaformulae.com/en/news/2020/june/ar-vr

WayRay – offical website. Retrieved on 05.12.2021
https://wayray.com/#who-we-are
https://wayray.com/press-area/#media_coverage

Online article on WayRay by CNET and Autocar. Retrieved on 05.12.2021
https://www.hyundai.news/eu/articles/press-releases/hyundai-wayray-unveil-next-generation-visual-technology-at-ces-2019.html

YouTube video by Roadshow: CES 2019: WayRay’s holographic AR windshield is real, hitting the road soon. Retrieved on 05.12.2021
https://www.youtube.com/watch?v=HFIgjQI2E6Y

AutoCar article on the Pininfarina concept car. Retrieved on 05.12.2021
https://www.autocar.co.uk/car-news/new-cars/pininfarina-concept-car-showcased-holographic-ar-display

Online article by AutoZeitung: Mercedes entwickelt MBUX weiter. Retreived on 05.12.2021
https://www.autozeitung.de/mercedes-infotainment-192628.html

Mercedes-Benz MBUX System – online articles and images, retrieved on 05.12.2021
https://www.wired.com/story/in-car-ar-drivers-get-new-view-road-ahead/
https://www.extremetech.com/extreme/314758-2021-mercedes-s-class-2-hud-sizes-level-3-autonomy-4d-sound-5-lcds
https://carbuzz.com/news/new-mercedes-s-class-shows-off-amazing-augmented-reality-display

Audi AR HUD system: online article and Youtube video on Slashgear. Retreived on 05.12.2021
https://www.slashgear.com/the-audi-q4-e-trons-augmented-reality-head-up-display-is-dashboard-genius-09662735/
https://www.audi-technology-portal.de/de/elektrik-elektronik/fahrerassistenzsysteme/audi-q4-e-tron-ar-hud-de/

Online article on GeekDad: Augmented Reality for Your Ears. Retrieved on 01.02.2022
https://geekdad.com/2016/02/arkamys/

Image of Mercedes G350d soundmodule. Retrieved on 01.02.2022
https://www.tuningblog.eu/kategorien/tuning-wiki/soundgenerator-nachruesten-232502/

CarThrottle article on sound enhancers. Retrieved on 05.12.2021
https://www.carthrottle.com/post/5-ways-that-manufacturers-enhance-the-sound-of-their-cars/

The Porsche Sound – online article, retrieved on 05.12.2021
https://newsroom.porsche.com/de/produkte/taycan/sound-18542.html

AR basics and automotive trends

| a short and basic definition on Augmented Reality, the first implementations in vehicles and current innovation trends

What exactly is Augmented Reality and when was it first used?

To have a clear distinction between related expressions, Paul Milgram’s Reality-Virtuality Continuum from 1994 shows the relation of Augmented, Mixed and Virtual reality in a very comprehensible way. [3] As shown in the illustration below, AR is the evolution of real environments in the direction of complete virtuality, but still having a majority of real content. Augmented Virtuality on the hand would describe systems using more virtual than real models.

Illustration by P. Milgram and H. Colquhoun Jr., in A Taxonomy of Real and Virtual
World Display Integration [4]

To have an official definition, in The Concise Fintech Compendium AR is described as “an enhanced version of the physical, real-world reality of which elements are superimposed by computer generated or extracted real-world sensory input such as sound, video, graphics or haptics.” [1]

Already in 1997 R. T. Azuma stated three essential characteristics of AR systems [2]:

  • combining reality with a virtual world
  • interacting in real-time
  • registering in 3D space

Azuma also described the two basic possibilities of combining virtual inputs with the real world: virtual objects can be added to the real perception or real objects can be hidden by overlaying virtual effects. This may be possible not only for optical perception, but also for sound and haptics. He described systems with speakers and microphones, altering the incoming sound of our surroundings (like today’s noise-cancelling), or gloves with additional haptic feedback of simulated forces. [2] Basically AR could help us to enhance all of our senses, but it is mostly implemented in visual systems. [6]

After reading basics theories on Augmented Reality from the early 1990’s, one wouldn’t think that the first personal AR system was developed in 1968 at the Harvard University by Ivan Sutherland, the “father of computer graphics” – a HMD (Head-Mounted-Display) system. [8]

Regarding vehicles and and the first implementation of AR, we have to go even further back in time. The predecessor of today’s BAE System plc., Elliot Flight Automation along with Cintel claim the development of the first Head-Up-Display (HUD) in operational service in 1961 – for a military aircraft of the British Royal Navy, the Blackburn Buccaneer. [9]

The first HUD in a passenger car is stated to be used in the Oldsmobile Cutlass Supreme Indy 500 pace car made by General Motors in 1988. [10] Following photo depicts this very simple AR solution on the windscreen.

The HUD in the Oldsmobile Cutlass Supreme Indy500 pace car, from 1988.
Source: https://www.autoevolution.com/news/how-to-add-a-head-up-display-to-your-car-136497.html

In the last decades, AR was further decveloped and implemented in many different areas, and with the evolution of displays, projectors and computer graphics, we can have now our own AR applications on our smartphones or passenger cars. While starting to dig deeper into existing automotive AR solutions, I found the following interesting study as a foundation to enclose my topic of interest.

AR innovations in the automotive industry today

A study carried out by the Austrian “innovation intelligence company” StartUs GmbH analysed over 400 startups and created an overview on the most innovative use cases of AR in the automotive industry [7]:

The study chart by StartUs GmbH [4]

They state that the the total augmented reality automotive market is growing by 177% every year and will reach $5.5 billion by 2022. [7]

From their five areas of innovation my main focus will be on “Experience Enhancement”. The use cases are see-through displays, windshield projectors or various wearables, that can help the driver with additional, immediate information on important events of the surroundings without any distraction. [7]

Existing solutions for this area will follow in my further research.

Sources

[0] Wikipedia – Summaries on Augmented Reality
https://en.wikipedia.org/wiki/Augmented_reality
https://de.wikipedia.org/wiki/Erweiterte_Realität
https://en.wikipedia.org/wiki/Mixed_reality

[1] Schueffel, P.: The Concise Fintech Compendium. Fribourg: School of Management Fribourg/Switzerland, 2017
https://web.archive.org/web/20171024205446/
http://www.heg-fr.ch/EN/School-of-Management/Communication-and-Events/events/Pages/EventViewer.aspx?Event=patrick-schuffel.aspx

[2] Azuma, R. T.: A Survey of Augmented Reality. In: Presence: Teleoperators and Virtual Environments. 6, Nr. 4, 1997, S. 355–385

[4] Milgram, P., Colquhoun Jr., H.: A Taxonomy of Real and Virtual World Display Integration. In: Mixed reality: Merging real and virtual worlds, Springer, 1999, p. 1-26

[5] The basics of Augmented Reality – Interview with an AR expert; Indestry.com; Retrieved on 27.11.2021
https://www.indestry.com/blog/the-basics-of-augmented-reality-interview-with-an-ar-expert

[6] Kipper, G., Rampolla J.: Augmented Reality: An Emerging Technologies Guide to AR; Elsevier; 2013

[7] Online article: How Augmented Reality Disrupts The Automotive Industry; by StartUs Insights Research Blog. Retrieved on 28.11.2021
https://www.startus-insights.com/innovators-guide/how-augmented-reality-disrupts-the-automotive-industry/

[8] Online article by Javornik, A: The Mainstreaming of Augmented Reality: A Brief History; Harvard Business Review; 2016. Retrieved on 28.11.2021
https://hbr.org/2016/10/the-mainstreaming-of-augmented-reality-a-brief-history

[9] Online article by BAE Systems: The evolution of the Head-Up Display. Retrieved on 28.11.2021
https://www.baesystems.com/en/feature/our-innovations-hud

[10] Wikipedia summary on automotive Head-Up Displays:
https://en.wikipedia.org/wiki/Automotive_head-up_display

Augmented Reality solutions and their challenges for in-car UX/UI

| a short introduction to the research topic

Drivers of new cars nowadays are served by several different assistance systems, presenting information about the car and the environment. With the evolution of digital interfaces, the cars GUIs improved in quality, size and customizability.

Besides displays on the dashboard and center console, the Head Up Displays (HUD) were developed with growing importance due to their optimal positioning directly in the driver’s line of sight. Displaying information on the windshield is the perfect condition for using Augmented Reality in vehicles. By this technology a completely new user experience is enabled without any need for clumsy AR-glasses. There are already some expanded systems in new, high-end cars on the market, and newest demos of suppliers like Continental and Panasonic indicate a fast spread of augmented reality technologies for vehicles in the future.

With further evolution of connected cars and smart cities, there will be countless of inputs and data to be shown besides of driver navigation. Until the cars are not completely autonomous, the collected big data will be more and more used to help the driver on his way. On one hand, probably some implementations like HUDs will become mandatory equipment, because of their safety benefits. On the other hand, the data and information has to be selected and designed precisely, not to overwhelm, confuse and distract the driver in any way.

In my research I want to examine the current and possible future trends of AR solutions for in-car user interfaces and the involved challenges that have to be overcome. Some examples of questions I want to get answers to are:

  • What in-car AR solutions are already on the market and in development?
  • What are the possible digital information groups that can truly help drivers behind the steering wheel?
  • In which ways can AR be implemented to deliver helpful information to the driver?
  • What are the boundaries of the human perception and which psychological aspects have to be considered to design a safety critical in-car AR interface?
Source: Futurus

Inspirations:

Forbes: Are You Ready for Augmented Reality in your Car?
https://www.forbes.com/sites/bernardmarr/2019/08/26/are-you-ready-for-augmented-reality-in-your-car/?sh=3ffda8973144

Wards Auto: Augmented Reality HUDs Will Make Vehicles Safer, But There’s a Catch
https://www.wardsauto.com/vehicles/augmented-reality-huds-will-make-vehicles-safer-there-s-catch

Next Reality News: Augmented Reality in Cars — the Companies & Tech Driving Us into the Future
https://next.reality.news/news/augmented-reality-cars-companies-tech-driving-us-into-future-0182485/

First literature examples:

Pesce, M.: Augmented Reality – Unboxing Tech’s Next Big Thing; Polity Press, 2021

Aukstakalnis, S.: Practical Augmented Reality: A Guide to the Technologies, Applications and Human Factors for Ar and Vr (Usability); Addison-Wesley Professional, 2016

Castro, C.: Human Factors of Visual and Cognitive Performance in Driving; CRC Press, 2009

Azzam, M.: Virtual Reality and Augmented Reality Safety Rules; Independently published, 2019

Jacob, P. & Jeannerod, J.: Ways of Seeing: The scope and limits of visual cognition; Oxford University Press, 2004

Wiklund, M.E., Costantino, C., Post, R. et al.: Designing for Safe Use: 100 Principles for Making Products Safer; CRC Press, 2019

Parker, P.M.: The 2021-2026 World Outlook for Augmented Reality Products; ICON, 2020